163 research outputs found

    Quantifying systematic uncertainties in supernova cosmology

    Full text link
    Observations of Type Ia supernovae used to map the expansion history of the Universe suffer from systematic uncertainties that need to be propagated into the estimates of cosmological parameters. We propose an iterative Monte-Carlo simulation and cosmology fitting technique (SMOCK) to investigate the impact of sources of error upon fits of the dark energy equation of state. This approach is especially useful to track the impact of non-Gaussian, correlated effects, e.g. reddening correction errors, brightness evolution of the supernovae, K-corrections, gravitational lensing, etc. While the tool is primarily aimed for studies and optimization of future instruments, we use the ``Gold'' data-set in Riess et al. (2007) to show examples of potential systematic uncertainties that could exceed the quoted statistical uncertainties.Comment: Accepted for publication in JCA

    Zwicky Transient Facility constraints on the optical emission from the nearby repeating FRB 180916.J0158+65

    Get PDF
    The discovery rate of fast radio bursts (FRBs) is increasing dramatically thanks to new radio facilities. Meanwhile, wide-field instruments such as the 47 deg2^2 Zwicky Transient Facility (ZTF) survey the optical sky to study transient and variable sources. We present serendipitous ZTF observations of the CHIME repeating source FRB 180916.J0158+65, that was localized to a spiral galaxy 149 Mpc away and is the first FRB suggesting periodic modulation in its activity. While 147 ZTF exposures corresponded to expected high-activity periods of this FRB, no single ZTF exposure was at the same time as a CHIME detection. No >3σ>3\sigma optical source was found at the FRB location in 683 ZTF exposures, totalling 5.69 hours of integration time. We combined ZTF upper limits and expected repetitions from FRB 180916.J0158+65 in a statistical framework using a Weibull distribution, agnostic of periodic modulation priors. The analysis yielded a constraint on the ratio between the optical and radio fluences of η200\eta \lesssim 200, corresponding to an optical energy Eopt3×1046E_{\rm opt} \lesssim 3 \times 10^{46} erg for a fiducial 10 Jy ms FRB (90% confidence). A deeper (but less statistically robust) constraint of η3\eta \lesssim 3 can be placed assuming a rate of r(>5r(>5 Jy ms)= hr1^{-1} and 1.2±1.11.2\pm 1.1 FRB occurring during exposures taken in high-activity windows. The constraint can be improved with shorter per-image exposures and longer integration time, or observing FRBs at higher Galactic latitudes. This work demonstrated how current surveys can statistically constrain multi-wavelength counterparts to FRBs even without deliberately scheduled simultaneous radio observation.Comment: Accepted for publication in ApJL, 9 pages, 4 figures, 1 tabl

    See Change:VLT spectroscopy of a sample of high-redshift Type Ia supernova host galaxies

    Get PDF
    The Supernova Cosmology Project has conducted the `See Change' programme, aimed at discovering and observing high-redshift (1.13 \leq z \leq 1.75) Type Ia supernovae (SNe Ia). We used multi-filter Hubble Space Telescope (HST) observations of massive galaxy clusters with sufficient cadence to make the observed SN Ia light curves suitable for a cosmological probe of dark energy at z > 0.5. As part of the See Change programme, we obtained ground-based spectroscopy of each discovered transient and/or its host galaxy. Here we present Very Large Telescope (VLT) spectra of See Change transient host galaxies, deriving their redshifts, and host parameters such as stellar mass and star formation rate. Of the 39 See Change transients/hosts that were observed with the VLT, we successfully determined the redshift for 26, including 15 SNe Ia at z > 0.97. This new sample of SNe Ia with multi-colour light curves is the largest to date at these redshifts. We show that even in passive environments, it is possible to recover secure redshifts for the majority of SN hosts out to z = 1.5. We find that with typical exposure times of 3 - 4 hrs on an 8m-class telescope we can recover ~75% of SN Ia redshifts in the range of 0.97 <z <1.5. Furthermore, we show that the combination of HST photometry and VLT spectroscopy is able to provide estimates of host galaxy stellar mass that are sufficiently accurate for use in a mass-step correction in the cosmological analysis

    Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Full text link
    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.Comment: Accepted for publication in The Astrophysical Journal (33 pages, 5 figures, 8 tables

    Absence of Fast-moving Iron in an Intermediate Type Ia Supernova between Normal and Super-Chandrasekhar

    Get PDF
    In this paper, we report observations of a peculiar SN Ia iPTF13asv (a.k.a., SN2013cv) from the onset of the explosion to months after its peak. The early-phase spectra of iPTF13asv show an absence of iron absorption, indicating that synthesized iron elements are confined to low-velocity regions of the ejecta, which, in turn, implies a stratified ejecta structure along the line of sight. Our analysis of iPTF13asv's light curves and spectra shows that it is an intermediate case between normal and super-Chandrasekhar events. On the one hand, its light curve shape (B-band Δm_(15) = 1.03 ± 0.01) and overall spectral features resemble those of normal SNe Ia. On the other hand, its large peak optical and UV luminosity (M_B = -19.84 mag, M_(uvm2) = -15.5 mag) and its low but almost constant Si II velocities of about 10,000 km s^(−1) are similar to those in super-Chandrasekhar events, and its persistent carbon signatures in the spectra are weaker than those seen commonly in super-Chandrasekhar events. We estimate a ^(56)Ni mass of 0.81 ± ^(+0.10)_(-0.18) M⊙ and a total ejecta mass of 1.59^(+0.45)_(-0.12)M⊙. The large ejecta mass of iPTF13asv and its stratified ejecta structure together seemingly favor a double-degenerate origin

    Type II-P Supernovae from the SDSS-II Supernova Survey and the Standardized Candle Method

    Get PDF
    We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey - II Supernova Survey. The redshifts of these SNe - 0.027 < z < 0.144 - cover a range hitherto sparsely sampled in the literature; in particular, our SNe II-P sample contains nearly as many SNe in the Hubble flow (z > 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. (2009). We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.Comment: Accepted for publication by ApJ; data used in this paper can be downloaded from http://sdssdp47.fnal.gov/sdsssn/photometry/SNIIp.tgz; citation errors correcte
    corecore